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ABSTRACT  In this research note, we describe the results of the first validation study of 
the U.S. Census Bureau’s new Community Resilience Estimates (CRE), which uses 
Census microdata to develop a tract-level vulnerability index for the United States. 
By employing administrative microdata to link Social Security Administration mor
tality records to CRE, we show that CRE quartiles provide more stable predictions 
of COVID-19 excess deaths than single demographic categorizations such as race or 
age, as well as other vulnerability measures including the U.S. Centers for Disease 
Control and Prevention’s Social Vulnerability Index (SVI) and the Federal Emergency 
Management Agency’s National Risk Index (NRI). We also use machine learning tech
niques to show that CRE provides more predictive power of COVID-19 excess deaths 
than standard socioeconomic predictors of vulnerability such as poverty and unemploy
ment, as well as SVI and NRI. We find that a 10-percentage-point increase in a key 
CRE risk measure is associated with one additional death per neighborhood during the 
initial outbreak of COVID-19 in the United States. We conclude that, compared with 
alternative measures, CRE provides a more accurate predictor of community vulnera
bility to a disaster such as a pandemic.

KEYWORDS  Vulnerability  •  Federal administrative data  •  COVID-19  •  Excess 
deaths  •  Disaster

Introduction

Vulnerability, or one’s ability to cope with external stressors with minimal harm, is 
unequally distributed across time and space (Cutter and Finch 2008). Vulnerability 
is also closely related to community resilience, which is the capacity of individuals 
and households in a community to absorb the impacts of a disaster (Masterson et al. 
2014). While vulnerability and resilience are conventionally separated into different 
bodies of thought, they represent two sides of the same resilience coin (Summers 
et al. 2017). For example, individual socioeconomic factors contributing to increased 
vulnerability, such as quality shelter and health care access, also contribute to one’s 
resilience to absorb the impacts of a disaster. A community’s vulnerability to a disaster 
is thus a critical aspect of a community’s resilience to a disaster. A simple measure of 
resilience (or vulnerability) that ranges from the most vulnerable to the most resilient 
is valuable to policymakers.
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While there are individual socioeconomic factors, such as education, income, 
and occupation, that contribute to aspects of resiliency and vulnerability (Kaplan 
1999; Shavers 2007), to obtain a single measure of resiliency/vulnerability, indices 
have generally been created by aggregating individual socioeconomic factors (Cutter 
1996; Cutter et al. 2008; Cutter and Derakhshan 2018). For example, the U.S. Cen-
ters for Disease Control and Prevention’s Social Vulnerability Index (SVI) and the  
Federal Emergency Management Agency’s National Risk Index (NRI) are con-
structed by aggregating survey estimates. An important limitation of this approach 
is that these indices are developed without consideration of survey sampling error 
because they treat survey estimates subject to sampling error as true parameter val
ues. So, for example, a place with an estimated poverty rate of 100% (±3%) would 
be treated as having a higher poverty vulnerability indicator than a place with an 
estimated poverty rate of 97% (±3%), despite the two places not being statistically 
different. When comparing indices that treat survey estimates as true parameter 
values, researchers find a high magnitude of uncertainty, and the precision of indi
ces decreases as the predicted vulnerability of a community increases (Tate 2012). 
Despite these known problems, the construction of an index at a set geographic 
level based on survey estimates that are treated as true parameter values continues 
to be the predominant method, which can lead to inconsistent validation outcomes  
(Derakhshan, Blackwood et al. 2022).

Existing methods of measuring vulnerability rely on combining publicly available 
demographic indicators that each have their own distribution of sampling errors, and 
this process reduces the accuracy of estimates (Willyard et  al. 2022). Robust and 
credible measures of vulnerability are needed (Adger 2006). As a result, the U.S. 
Census Bureau has launched a new data product for national agencies and local com
munities: the Community Resilience Estimates (CRE) Program population estimates. 
CRE population estimates are produced using information on individuals and house
holds from the 2019 American Community Survey (ACS) and the Census Bureau’s 
Population Estimates Program (PEP), and employ established U.S. Census small 
area modeling techniques. The CRE Program tracks how at risk every tract in the 
United States is to the impacts of COVID-19 and other local disasters by measuring 
the capacity of individuals and households to absorb, endure, and recover from the 
impacts of a disaster. Specifically, the CRE is based on individual- and household-
level risk factors (detailed below) to produce aggregate-level (tract, county, or state) 
small area estimates. The CRE provides an estimate of the number of people with a 
specific number of risks.1 It thus represents two major improvements over existing 
resiliency/vulnerability measures: (1) the CRE reduces sampling error by develop
ing resiliency estimates directly from data, rather than by treating survey estimates 
subject to sampling error as true parameter values; and (2) because the CRE does not 
rely on already aggregated data, it maintains the ability to measure the distribution 
of vulnerability among individuals.2 That is, two geographies may appear to have the 

1  In the current data file layout form, the estimates are categorized into three groups: zero risks, one or two 
risks, and three-plus risks.
2  Measures from other institutions rely on publicly available aggregated data and not only entail higher 
sampling error, but the sampling error size difference varies across geography, with rural areas having 
larger disparities in sampling errors (Willyard 2021).
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same number of risk factors in public data, but only with microdata (like that used 
to construct the CRE) can we create a measure that takes an intersectional (and dis
tributional) approach to risk. However, CRE has yet to be validated relative to other 
common measures of vulnerability, such as individual socioeconomic measures like 
poverty, or other vulnerability indices such as the SVI or NRI. This article seeks 
to provide such a validation test using the COVID-19 pandemic as a test disaster. 
The COVID-19 pandemic is a useful test case because its negative effects have been 
unequally distributed across geography and show a strong relationship to individual 
and household characteristics. However, quantifying this relationship, especially at 
finer geographic granularity, has been difficult with public data.

In this research note, we first review existing literature on the importance of social 
vulnerability and community resilience, including details on existing measures and 
data. Then we detail how the CRE Program develops its estimates from underlying 
U.S. Census Bureau microdata. Next, we develop an empirical application in which 
we link the CRE Program’s underlying microdata to U.S. Social Security Adminis-
tration microdata to test the relationship between the CRE and excess deaths from 
COVID-19. We show that CRE quartiles provide a more stable predictor of excess 
deaths than race, age, SVI, and NRI. We then use lasso machine learning to compare 
the predictive power of socioeconomic indicators of vulnerability and SVI, NRI, and 
CRE. We find that CRE provides more predictive power than these commonly used 
alternatives. We conclude with a brief discussion of the value of the CRE Program to 
community organizers and disaster management and argue that the CRE will provide 
a valuable resource to researchers to examine a wide variety of disasters and perhaps 
other applications, such as public health planning.

Alternative Measures of Social Vulnerability and Community Resilience

We briefly highlight the literature on the related concepts of resiliency and vulner
ability (Folke 2006), especially in connection to disasters such as hurricanes (Finch 
et al. 2010; Gotham and Campanella 2011) and the COVID-19 pandemic (Kimhi et al. 
2020).3 Various institutional, social, economic, infrastructural, and demographic fac
tors have been found to affect the resilience of communities to pandemics (Suleimany 
et al. 2022), hurricanes (Almutairi et al. 2020), and other disasters (Cutter et al. 2008). 
Because individual-level microdata are not readily available, many researchers take a 
place-based approach to measure vulnerability and resilience by choosing a geographic 
level of analysis and breaking up the concept into various domains and indicators. For 
example, SVI is either a tract-level or county-level index made up of more than 15 indi
cators and four domains: socioeconomic status, household characteristics, racial and 

3  Despite the name, the Community Resilience Estimates examined here more closely follow the vulner
ability literature rather than the resiliency literature. Measures of resiliency typically also include more 
measures of physical infrastructure and community resources (in addition to human vulnerability mea
sures). The CRE focuses on individual-level measures of vulnerability. We discuss both vulnerability and 
resilience, as the CRE and its underlying methods can be informative to both related concepts. For more 
details on the distinction and relationship between (and strong correlation of) resilience and vulnerability, 
see Bergstrand et al. (2015) and Logan et al. (2016).
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ethnic minority status, and housing type and transportation (Flanagan et al. 2011). The 
University of South Carolina Hazards and Vulnerability Research Institute’s Baseline 
Resilience Indicators for Communities (BRIC) is made up of 49 indicators representing 
six domains measured at the county level: social, economic, community capital, insti
tutional capacity, housing/infrastructure, and environmental (Cutter et al. 2014). NRI 
further expands upon SVI and BRIC by multiplying the expected annual losses for 
natural disasters by a community risk factor, where the community risk factor is the 
SVI overall percentile ranking score divided by the BRIC overall percentile ranking 
score. While such a measure may be less relevant in a pandemic that disproportion
ately affected populations rather than physical infrastructure, SVI and NRI are com
monly used measures of resiliency/vulnerability (Derakhshan, Emrich et al. 2022), so 
we include both in our comparisons.

Indeed, indices have been shown to be valuable for community organizers, disas
ter managers, and researchers (Cutter et al. 2003; Sawyer et al. 2022). A review of 
this literature demonstrates the extent to which resilience is inequitably distributed 
(Peacock et al. 1997) and spatially segmented (Logan et al. 2016) by demographic 
groups. There is substantial agreement in the literature on how resiliency and vulner
ability vary by age, gender, race, ethnicity, and socioeconomic status (Cutter et al. 
2003; Elliott and Pais 2006), and these characteristics overlap with locational vul
nerability (Logan et al. 2016). Therefore, existing measures such as the SVI and NRI 
generally include a similar selection of demography and socioeconomic variables in 
their construction.

While the U.S. Census Bureau’s new CRE Program’s selection of underlying vul
nerability measures differs slightly relative to the SVI and NRI,4 the CRE’s main 
improvement on these measures lies in how the survey microdata produce estimates 
directly rather than indirectly from already aggregated estimates with their own respec
tive margins of error. More specifically, since many indices do not incorporate sam
pling error, they do not reflect the statistical intricacies of survey data in their estimates. 
In addition, indices that do not produce margins of error are not as practically useful 
as those that do. Without the production of margins of error along with estimates, a 
statistically significant difference between places or across time cannot be determined.

Intersectional approaches to vulnerability and resilience highlight how vulnera
bility is the result of different and interdependent marginalization processes (Kuran 
et al. 2020; Stanczyk 2020). In addition to the statistical issues associated with using 
estimates to develop indices, indices that rely on already aggregated publicly avail
able data lose the ability to measure the distribution of vulnerability among individ
uals. That is, two geographies may appear to have the same number of risk factors 
in public data, but only with microdata (like that used to construct the CRE) can we 
create a measure that takes an intersectional (and distributional) approach to risk. 
Vulnerability factors are distributed nonrandomly across demography and geogra
phy (Logan et al. 2016; Peacock et al. 1997). Thus, a simple geographic count of 

4  For example, the SVI includes 16 variables from ACS 5-year estimates, including below 150% poverty, 
unemployed, housing cost burden, no high school diploma, no health insurance, aged 65 or older, aged 17 
or younger, civilian with a disability, single-parent households, English language proficiency, seven racial 
categorizations, multi-unit structures, mobile homes, crowding, no vehicle, and group quarters. On the 
other hand, CRE uses 10 variables (described below) that are overlapping in topical nature.
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vulnerable persons from aggregate data will miss the fact that some geographies have 
individuals facing multiple risk factors. An index built on disaggregated microdata 
can account for this distribution and thereby gain predictive power. In other words, 
the distribution of risk factors within a geography, rather than the simple count of risk 
factors within a geography, improves the estimation of local resilience.

The CRE

To implement such an index, the CRE is created by first identifying vulnerability 
indicators within ACS microdata. The following 10 vulnerability indicators are used 
in 2019 CRE: (1) households with an income-to-poverty ratio less than 130%; (2) less 
than one individual living in the household is aged 18–64; (3) household crowding, 
defined as more than 0.75 persons per room; (4) households with limited education, 
defined as having no one older than 16 with a high school diploma or having limited 
English speaking; (5) no one in the household is employed full-time year-round (but 
the flag is not applied if all residents of the household are aged 65 or older); (6) indi
vidual with a disability posing a constraint to significant life activity; (7) individual 
with no health insurance; (8) individual aged 65 or older; (9) households without a 
vehicle; and (10) households without broadband internet access.5 Of course, some 
expert opinion enters the choice of these 10 vulnerability indicators, but they are 
nonetheless common indicators of public health, vulnerability, and disaster prepared
ness (Adger 2006; Peacock 1997; Smith and Kington 1997; Strully 2009; Tate 2012; 
Willyard et al. 2022).6

Individuals within the ACS microdata are then described as low risk (0 vulnerabil
ity indicators), moderate risk (1–2 vulnerability indicators), or high risk (3+ vulnera
bility indicators). Next, using direct survey methods, tabulations for states, counties, 
and tracts for the number of people at low, moderate, and high risk are estimated. 
These direct survey estimates are then used to inform the small area model.7 More 
specifically, CRE follows an area-level approach from small area estimation: a direct 
survey estimate is averaged with an indirect estimate to produce a composite esti
mate. The average is a weighted average, and the estimates are less volatile than 

5  The CRE thus uses individual microdata, and characteristics of the household in which they live are also 
applied to them. An income-to-poverty ratio of less than 130% was chosen because it is an important cut
off for eligibility for federal social safety net programs. The CRE focuses on federal measures (and does 
not consider regional cost of living’s influence on poverty) because social safety net program eligibility is 
an important aspect of local resiliency and those thresholds do not generally vary regionally. Furthermore, 
cost of living is endogenous to local amenities, which can itself directly influence local resiliency. The 
CRE hence avoids these potential complications that would have arisen if regional variation in cost of 
living had been considered.
6  For more details on the choice of these 10 measures, see U.S. Census Bureau (2021).
7  By combining survey data with auxiliary data, through small area modeling techniques, survey data 
can “borrow strength” from the additional information to render more precise estimates (Rao and Molina 
2015). Small area estimation methods can enhance survey estimates to make more precise estimates than 
direct survey estimation techniques alone. For example, in comparison to 2005 ACS 1-year direct survey 
estimates of county poverty, the U.S. Census Bureau’s Small Area Income and Poverty Estimates Program 
produced a 56% decline in standard error over all counties, and gains were the greatest among counties 
with smaller ACS sample sizes (Bell et al. 2007).
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either of the two original estimates alone. Here, direct estimates refer to ACS esti
mates for the number of people at low, moderate, and high risk as described above. 
The indirect, or synthetic, estimates for the number of people at low, moderate, and 
high risk at the tract level are developed by applying modeled proportions to auxil
iary population data from the U.S. Census Bureau’s Population Estimates Program.8 
Additionally, variances for direct survey estimates are smoothed using a generalized 
variance function (GVF).

Next, the weight given to an indirect estimate when producing the composite esti
mate is the ratio of the GVF variance of the direct estimate to the total variance (i.e., 
the sum of the GVF variance and the estimated variance of the indirect estimate). The 
weight for the direct estimate is the complement (i.e., one minus the weight for the 
indirect estimate). As a result, when survey methods are more precise, the direct sur
vey estimate receives a greater weight; when direct survey methods are less precise, 
the indirect modeled estimate receives a greater weight. This allows CRE to produce 
reliable estimates of the number of people in each tract that are low, moderate, or 
high risk.9 Thus, in addition to improved statistical quality (found by creating the 
CRE directly from microdata rather than from already aggregated estimates), this 
final measure inherently includes information on both the number and the distribution 
(among residents) of vulnerability variables. The county-level and tract-level ver
sions of the CRE are publicly available from the Census Bureau (https:​/​/www​.census​
.gov​/programs​-surveys​/community​-resilience​-estimates​/data​/datasets​.html ).

CRE Empirical Application: Relationship With COVID-19 Excess Deaths

Data and Measures: Linking the CRE Microdata to Social Security Administration Data

We link the publicly available CRE to the restricted U.S. Social Security Administra-
tion Numident file (quarter 1 of 2021) to examine the relationship between CRE risk 
measures and excess deaths resulting from the COVID-19 pandemic.10 Linkages are 

8  PEP annually utilizes current data on births, deaths, and migration to calculate population change since 
the most recent decennial census and produce a time series of estimates of population, demographic com
ponents of change, and housing units.
9  The detailed notation of the composite estimator at the tract level is

!θt, g = wt, grt, g + (1− wt, g )R! t, g

wt, g =
v!t, g

v!t, g + MSE! t, g

for each tract t and vulnerability group g (low, moderate, high), where
wt, g = shrinkage weight
v!t, g = GVF-estimated sampling variance
MSE! t, g = estimated mean square error (i.e., model variance)
θ! t, g = composite estimate
R!t, g = direct survey estimate
rt, g   = indirect (model) estimate.

10  For details on accessing similar restricted microdata, see the Federal Statistical Research Data Center 
system (https:​/​/www​.census​.gov​/about​/adrm​/fsrdc​.html).
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achieved by using the restricted Master Address File Auxiliary Reference File 
(MAF), which we use to assign census tracts to individuals identified in the Numi-
dent.11 The resulting dataset contains individual-level observations of deaths, each of 
which is assigned to a census tract of residence (Finlay and Genadek 2021). Thus, 
we can compute death counts and rates at the tract-month level and, using tract-level 
CRE scores, which are publicly available (https:​/​/www​.census​.gov​/programs​-surveys​ 
/community​-resilience​-estimates​/data​/datasets​.html ), determine whether CRE risk 
scores successfully predicted excess deaths due to COVID-19 in 2020. We also link 
the CRE’s restricted underlying microdata (Ruggles 2014) to individual deaths to 
compare the CRE components’ predictive capacity to the CRE itself.

Empirical Results

Stability of COVID-19 Excess Deaths Predictions

Figure 1 shows trends in mortality by tract-level CRE risk quartiles,12 which are 
formed by taking quantiles of the “3+ risk factors” measure described earlier. Tracts 
in the highest quartile display larger responses to the COVID-19 shock than tracts in 
other quartiles. This larger response is most evident in the March 2020 spike, but a 
similar response can be seen in the December spike.

Race and age are correlates not only of mortality generally, but are also known to 
be important correlates of mortality during the COVID-19 pandemic (Bassett et al. 
2020). Accordingly, we provide a comparison of the variation in COVID-19 mortal
ity of these categorizations relative to the CRE to offer a simple comparison of the 
relative magnitude of the mortality variation across categorizations, as well as the 
relative consistency with age and race. The magnitude of the mortality differences 
across CRE risk categories is broadly comparable to the magnitude of the differences 
observable across race and age categories, but the CRE risk differences are more 
consistent across the post-COVID-19 period. Figure 2 illustrates trends in mortality 
by race, where race categories are assigned using Social Security records. Following 
the initial March 2020 COVID-19 shock, Black mortality rose to just over 170% of 
its pre-March mean, while White mortality rose to slightly less than 120% of its pre-
March mean. Figure 3 shows trends in mortality by age, where age categories are 
measured using date of birth from Social Security records. The mortality of persons 
aged 65 or older rose to more than 125% of its pre-March mean, whereas age 0–5 
mortality steadily declined over the course of 2020. Although race and age break
downs have tremendous predictive power, because CRE measures are a summary 
index of risk, they more consistently differentiate groups by COVID-19 mortality 
response rates than these demographic measures. Specifically, we note that the CRE 
bins consistently stratify the trends, while the demographic groups intersect over the 
months in 2020 (see Figure 1).

11  Numident is 2021 quarter 1, while MAF is 2020. The 2021 Numident will include all Protected Identifi-
cation Keys (PIKs) in the 2020 Numident and the 2020 MAF will have concurrent residential geographies 
at the time of the COVID-19 shock in March 2020.
12  The results are robust to alternative breakdowns, such as deciles.
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Fig. 1  Tract-month trends in death rates by CRE quartile. Quartiles are defined using the CRE 3+ measure. 
Data are based on Numident death counts merged to the MAFID.
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Fig. 2  Tract-month trends in death rates by race. Data are based on Numident death counts and race measures 
merged to the MAFID. AIAN = American Indian or Alaska Native. HI = Hawaiian. PI = Pacific Islander.
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The magnitude of the mortality differences across tract-level CRE risk categories is 
comparable to that of the mortality differences seen in the SVI and NRI, but the CRE 
risk differences are more consistent across the post-COVID-19 period. Figures 4 and 
5 illustrate COVID-19 excess deaths by SVI and NRI quartiles, respectively. The SVI 
quartiles do not consistently predict excess deaths after the COVID-19 emergency, 
though it outperforms the NRI (in terms of stability of quartile excess deaths levels). 
The NRI’s “lowest risk” quartiles appear to jump during the COVID-19 pandemic. 
Unlike CRE and SVI, NRI considers the value of expected annual losses of each 
community (in terms of “building value, agricultural value, and population value”). 
NRI’s underperformance may be exacerbated in the context of the COVID-19 pan
demic, which disproportionately affected populations rather than also affecting phys
ical infrastructure. We take these results as descriptive evidence of CRE’s relative 
predictive power and relative predictive stability.

Comparing the Predictive Power of CRE Using Machine Learning

To formalize the comparison of the relative predictive importance of CRE, NRI, SVI, 
and individual socioeconomic variables, we generated a machine learning (lasso) 
standardized coefficient plot, in which we tested their relative ability to predict the 
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Fig. 3  Tract-month trends in death rates by age categories. Data are based on Numident death counts and 
age measures (derived from birth dates) merged to the MAFID.
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Fig. 4  Tract-month trends in death rates by SVI quartiles. Data are based on Numident death counts and the 
publicly available tract-level SVI merged to the MAFID.
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Fig. 5  Tract-month trends in death rates by NRI quartile. Data are based on Numident death counts and the 
publicly available tract-level NRI merged to the MAFID.
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increase in deaths from the COVID-19 pandemic.13 Figure 6 shows a line drawn for 
each coefficient that traces its value over the searched values of the penalty parameter. 
The predictors are entered into the model in the order of their linear regression coef
ficient magnitude. As a robustness check, Figure 7 shows the results when, instead 
of calculating the change in mortality from 2019 to 2020 at the tract-month level, 
we use an alternative measure of excess deaths as the dependent variable, which is 
a nonnegative measure of mortality responses (Lariscy et al. 2018). That is, to test 
for robustness of the predictive power of the CRE measures, we construct an excess 
death measure that takes the 2019 to 2020 tract-level difference in deaths and sets any 
negative values (death decreases) to zero.

Consistent with our theory-driven hypothesis and the foregoing descriptive evi
dence, CRE appears to have larger relative predictive power than its 10 underlying 
socioeconomic variables, the SVI, and the NRI. CRE has a steady rise to its final 
value, which is larger in magnitude than any of the alternative predictors. SVI also 
provides strong predictive power (though less than CRE), entering the model early 

13  By “increase in deaths,” we simply take the 2020 deaths at the tract-month level and subtract the 2019 
deaths at the tract-month level. To select among the many potential demographic and socioeconomic vul
nerability variables, we use the 10 variables that underlie the CRE. These variables are detailed in the 
section entitled The CRE.
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Fig. 6  Lasso (L1) standardized coefficient plot for change in deaths. Plot data are based on Numident death 
counts merged to the MAFID, using deaths as a percentage of the pre-COVID-19 mean. Other variables 
include the publicly available tract-level SVI and NRI, as well as the CRE and its 10 component variables, 
including those described in the section entitled The CRE.
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and rising throughout. However, both unemployment and poverty, while entering the 
model later, appear to end with a larger (in magnitude) final value than SVI. NRI 
appears to underperform relative to SVI and even some of the more important socio
economic variables. We offer these results as strong evidence in favor of our hypothe
sis that CRE provides more predictive power than alternative measures of geographic 
vulnerability.

Quantifying the Predictive Power of CRE on COVID-19 Excess Deaths

Table 1 quantifies this difference in response using the full values of the continu
ous CRE risk measure. The estimate in column 1 shows that, for an average census 
tract, a 1-percentage-point increase in the share of 3+ risk factors is associated with a 
0.15-percentage-point (2.2%) increase in deaths from 2019 to 2020. In other words, a 
10-percentage-point increase in share 3+ risk factors is associated with an increase of 
slightly more than one death per neighborhood from 2019 to 2020.

As with the two machine learning coefficient plots, we test an alternative measure 
of excess deaths. Column 2 of Table 1 shows estimates of the association between the 
share of 3+ risk factors and the alternative excess death measure (a nonnegative mea
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Fig. 7  Lasso standardized coefficient lots for excess deaths. Data are based on Numident death counts 
merged to the MAFID, using the change in the death rate per 1,000 and imposing a zero lower bound on 
the measure as the measure of excess deaths. Other variables include the publicly available tract-level 
SVI and NRI, as well as the CRE and its 10 component variables, including those described in the section 
entitled The CRE.
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sure of mortality responses). The estimates suggest that a 1-percentage-point increase 
in the share of 3+ risk factors is associated with a 0.1-percentage-point (0.6%) increase 
in mortality. Both mortality measures reported in Table 1 suggest the same qualitative 
story: a 10-percentage-point increase in the share of 3+ risk factors is associated with 
approximately one additional death per neighborhood from 2019 to 2020.

Discussion

Consistent with previous disasters, the COVID-19 pandemic highlighted the need 
for enhancing the measurement of community resilience for community organizers, 
disaster management, and researchers. This research note develops validation tests 
for the U.S. Census Bureau’s new Community Resilience Estimates, and we iden
tify the advantages of developing such estimates using underlying limited-access, 
individual-level risk factor microdata. In particular, we emphasize the CRE’s 
advantages of (1) using microdata directly, rather than already aggregated estima
tes of its components, which (2) allows for the distribution of risk factors among 
individuals within a geography to also provide information (and thereby enhance 
the accuracy) of the index. Including the distribution of risk factors within a com
munity, rather than the simple count of risk factors within a community, improves 
local resilience estimation.

After describing the CRE and its research-driven development, we apply the CRE 
to a simple empirical description of COVID-19 mortality spatial segmentation and 
excess deaths. Our results highlight that the CRE (1) segments U.S. Census tracts by 
death rates throughout the COVID-19 pandemic more consistently than other indi
ces, as well as single demographic criteria; (2) provides more predictive power of 
excess deaths than other indices, as well as single demographic or socioeconomic 
criteria; and (3) predicts excess deaths occurring during the COVID-19 pandemic. 

Table 1  Predictive strength of Community Resilience Estimates (CRE) measures and COVID-19 deaths

Change in Deaths
(1)

Excess Deaths
(2)

3+ Risk Factor Difference 0.148*** 0.102***
(0.00378) (0.00345)

Number of Observations 72,000 72,000
Mean Outcome Variable 6.23 15.18
Mean Number of Deaths (2019) 34.9 34.9

Notes: Table displays ordinary least-squares estimates of the association between the share of a tract with 
3+ CRE-designated risk factors and a COVID-19-related mortality measure. Standard errors are clustered 
at the tract level and shown in parentheses. In both columns, the independent variable is the share of resi
dents in a tract with 3+ CRE-designated risk factors. In column 1, the dependent variable is the raw change 
in deaths at the tract-month level from 2019 to 2020. In column 2, the dependent variable is a measure of 
excess deaths, which takes the raw tract-month change from 2019 to 2020 and sets the difference to zero if 
it were less than zero in a tract-month cell. Data are at the tract level and exact tract counts are rounded to 
protect privacy, as required by U.S. Census Bureau disclosure avoidance procedures.

***p < .001
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Specifically, we find that a 10-percentage-point increase in a key CRE risk measure is 
associated with one additional death per neighborhood during the initial outbreak of 
COVID-19. The CRE advances current measures of community resilience and will 
be useful for disaster preparedness, disaster response, and further research. ■
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